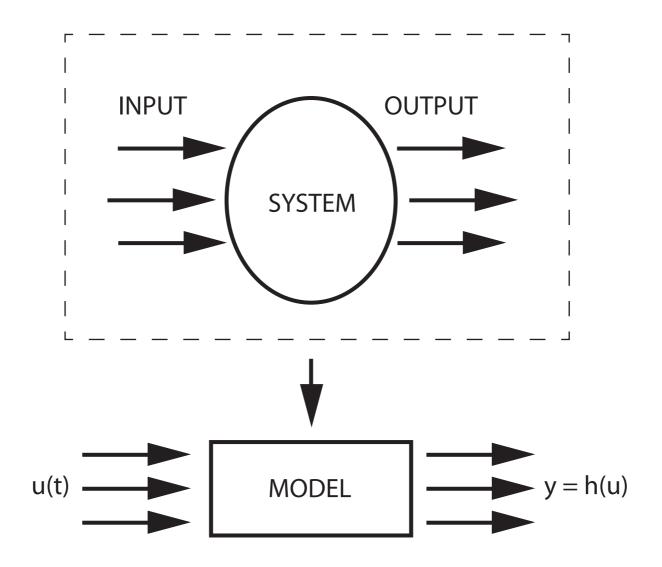
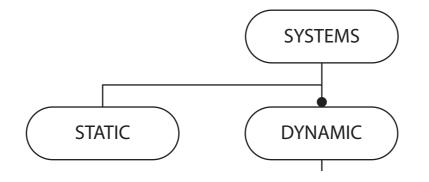
LECTURE 2: DISCRETE EVENT SYSTEMS I

Modeling and Simulation 2 Daniel Georgiev

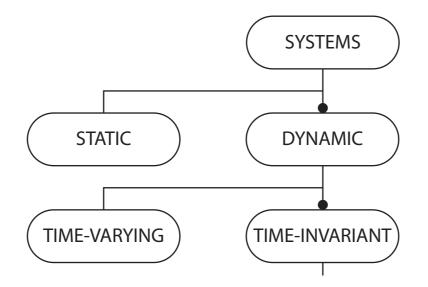
Winter 2014

INPUT-OUTPUT MODELS

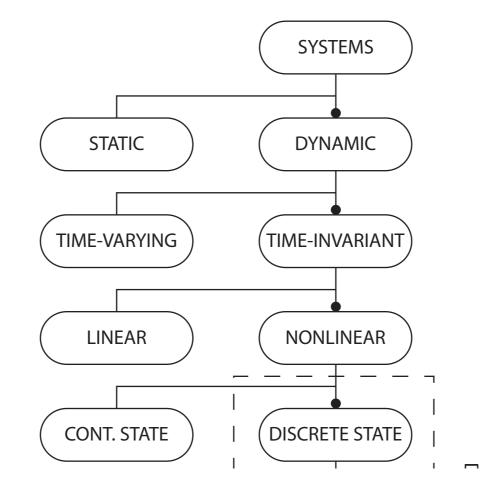




STATIC VS DYNAMIC MODELS



TIME-VARYING VS TIME-INVARIANT MODELS



DISCRETE VS CONTINUOUS STATE MODELS

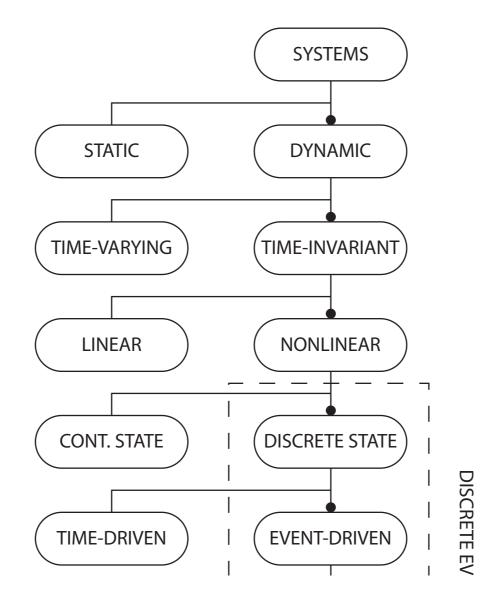
Definition: The state of a system at time t0 is the information required at t0 such that the output y(t), for all $t \ge t0$, is uniquely determined from this information and from u(t), $t \ge t0$.

CONCEPT OF A STATE

Definition: The state of a system at time t0 is the information required at t0 such that the output y(t), for all $t \ge t0$, is uniquely determined from this information and from u(t), $t \ge t0$.

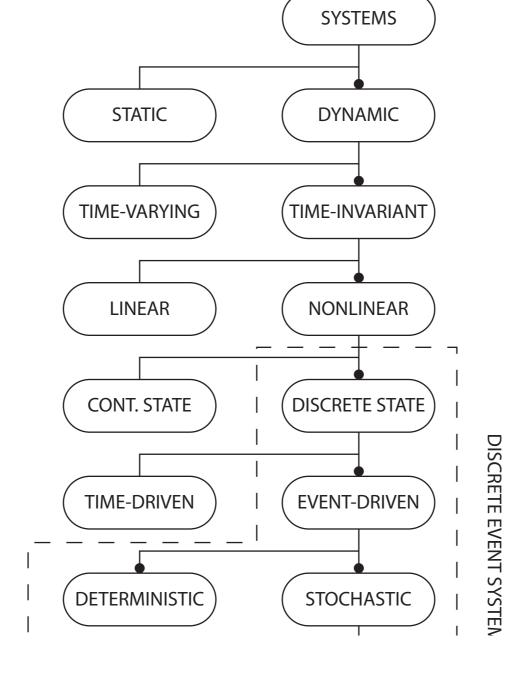
In other words ... *If God yesterday assembled yesterday's state of the state of the world ... we would not know the difference.*

CONCEPT OF A STATE



TIME-DRIVEN VS EVENT-DRIVEN MODELS

DETERMINISTIC VS Stochastic Models



EECS 661 - Chapter 1

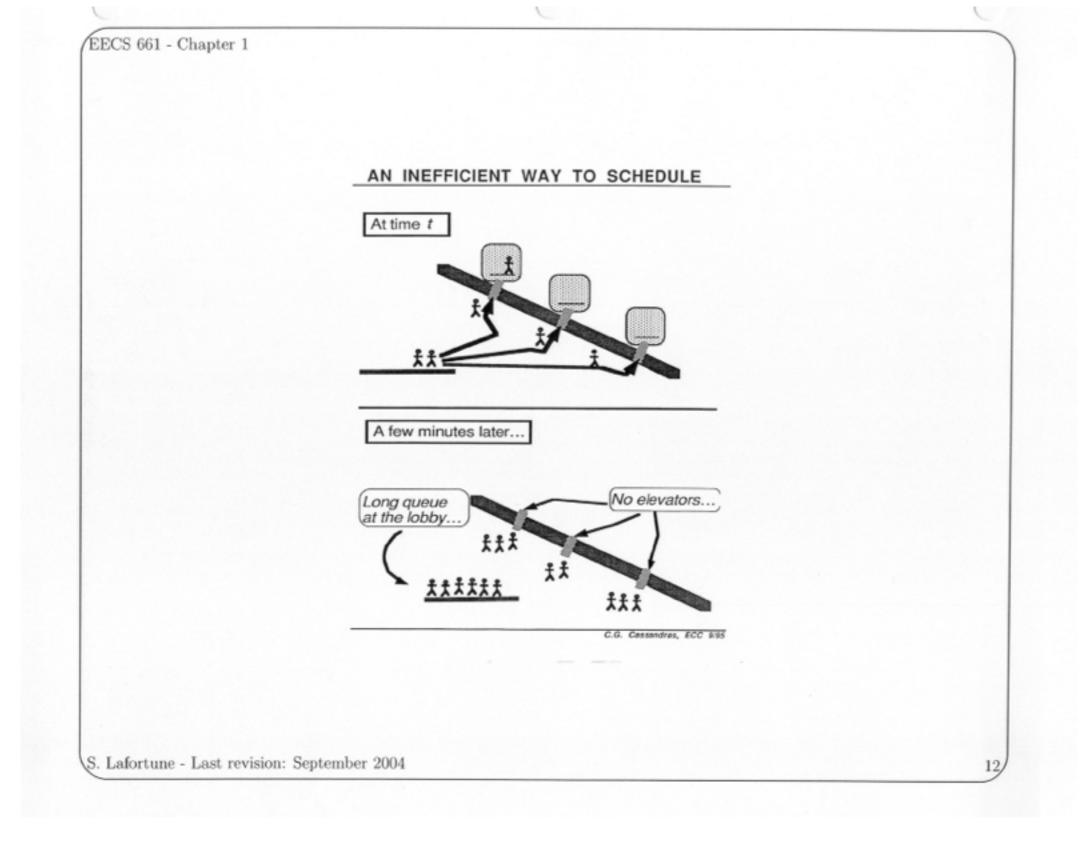
Dispatching Control in an Elevator System²

- Events: hall_call, car_call, car_arrives_at_floor_i, etc.
- States: position of car k, number of passengers waiting at floor i, etc. (very large state space!)
- Control problem: which car to send where so as to achieve "satisfactory" performance?
- Performance measures: average waiting time (until car comes), average service time (until car delivers to desired floor), fraction of passengers waiting more (on average) than one minute, etc.
- Probabilistic formulation: passenger arrival rates at floors, probability distribution for destination floors, load times and travel times, etc.
- Common solution: threshold-based control, i.e., hold a car until a *threshold* is reached.
 → The issue is then to determine this threshold and "automatically" adjust it in real-time, based on observed passenger arrival rates.

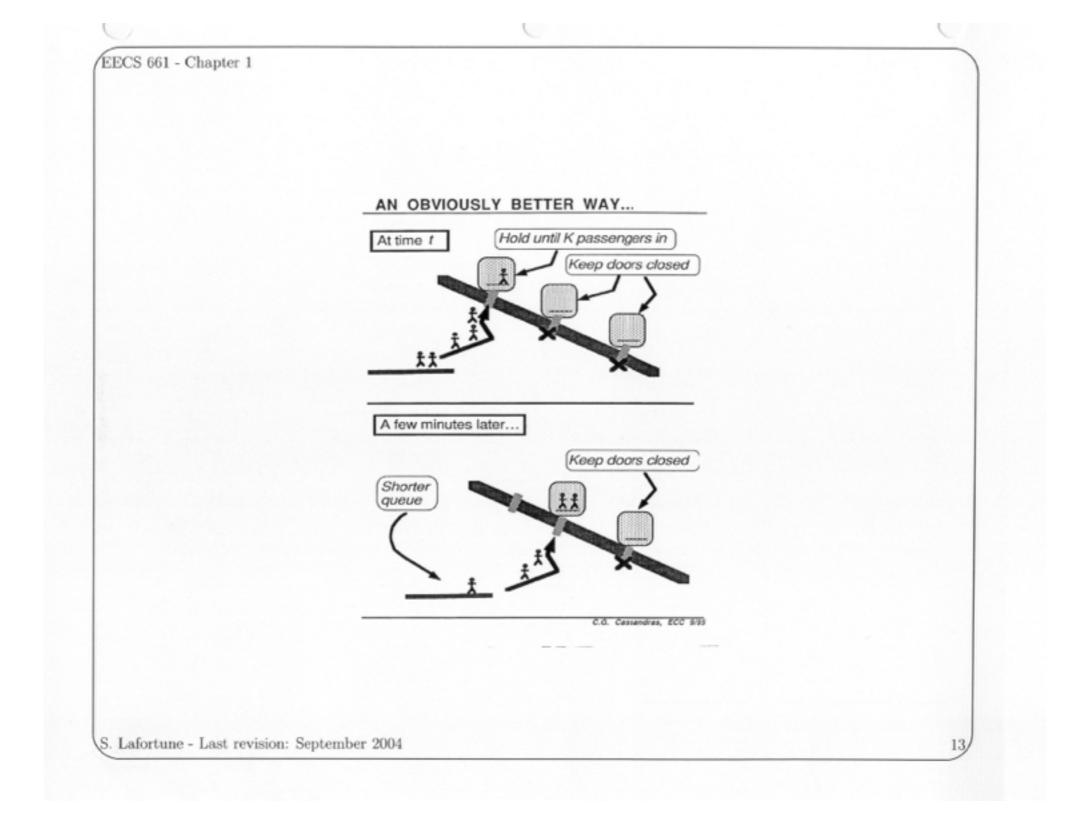
²Example due to C. Cassandras

S. Lafortune - Last revision: September 2004

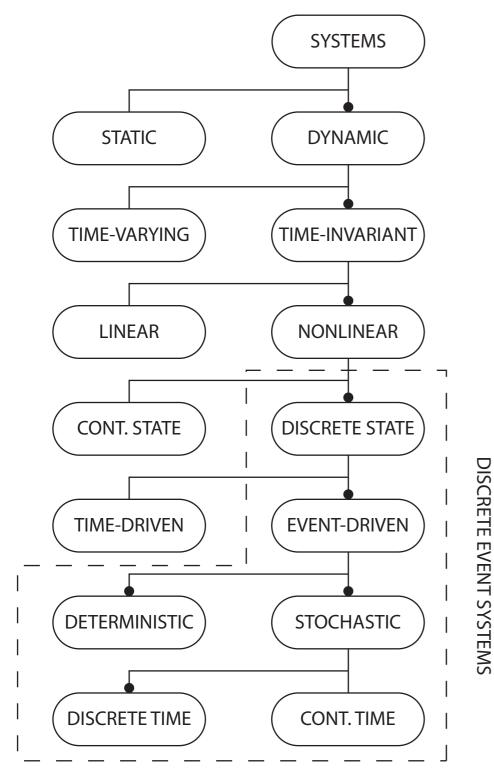
DISCRETE EVENT SYSTEMS



DISCRETE EVENT SYSTEMS



DISCRETE EVENT SYSTEMS



A set of events $E = \{e1, e2, e3, ...\},\$

LANGUAGE: e1e2e3...

TIMED LANGUAGE: (*e1,t1*)(*e2,t2*)(*e3,t3*)...

STOCHASTIC TIMED LANGUAGE: *P(s1):(e1,t1)(e2,t2)(e3,t3)...*

THREE LAYERS OF ABSTRACTION **Definition:** A string is a sequence of events.

Definition: A *language* over an event set $E = \{e1, e2, e3, ...\}$ is a set of finite-length strings formed from events in E.

Language operations: concatenation, prefix closure, Kleene closure, complement

WHAT IS A LANGUAGE IN DES THEORY?

Example: (server repair), $E = \{s,c,b,r\}$. In a queuing system, a server may start an operation 's', complete an operation 'c', break down 'b', and be repaired 'r'.

Corresponding language: The language that describes this simple process $L = \{(s(cs)^n br)^m, n \ge 0, m \ge 0\}$. This language is infinite.

Corresponding automaton: Such a language has a well defined finte description.

REPRESENTING LANGUAGES USING AUTOMATA

Definition: (Deterministic automaton) A deterministic automaton, denoted by G, is a six-tuple

 $A = (Q, E, g, q_0, \Gamma, Q_m)$

Definition: (Languages generated and marked) The language generated by G is

$$\mathcal{L}(A) := \{ s \in E^* : f(q_0, s) \text{ is defined} \}$$

The language marked by G is

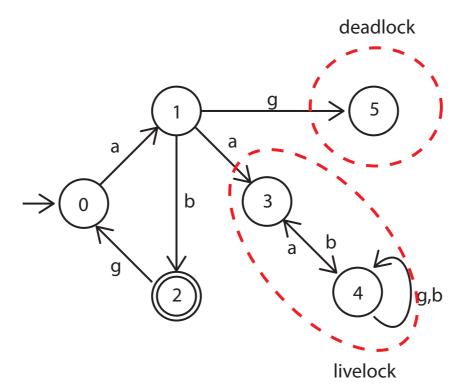
$$\mathcal{L}_m(A) := \{ s \in E^* : f(q_0, s) \in Q_m \}$$

FORMAL DEFINITION

Definition: (Blocking) Automaton A is said to be blocking if

 $\overline{\mathcal{L}_{m}\left(A\right)}\subset\mathcal{L}\left(A\right)$

Example:



DEADLOCK AND LIVELOCK

Definition: (Accessible Part)

A state is called accessible if it can be reached from the initial state.

Definition: (Coaccessible Part)

A state q is called coaccessible if there is a string that goes through q before it goes through a state in Qm.

Computation of accessible and coaccessible parts is an important model checking tool.

Definition: (Complement)

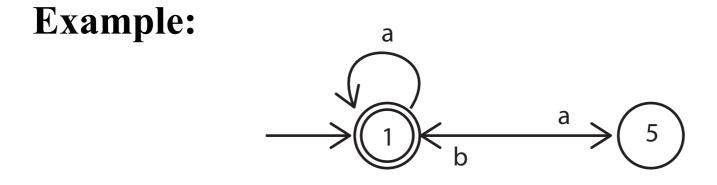
The complement automaton generates and marks the complement languages.

Exercise: Perform all these operations on the automaton in the previous slide.

OPERATIONS ON SINGLE AUTOMATA

Definition: (Nondeterministic automaton) A nondeterministic automaton is a sixtuple

 $A_{nd} = (Q, E, g_{nd}, q_0, \Gamma, Q_m)$



Theorem:

Any language generated by a nondeterministic automaton can be generated by a deterministic automaton.

NONDETERMINISTIC AUTOMATON

Example: (Non-regular language)

The following language cannot be generated by a finite state automaton.

$$L=\{\epsilon,ab,aabb,aaabbb,\ldots\}=\{a^nb^n:n\geq 0\}$$

Definition: (Regular language)

A language is said to be regular if it can be marked by a finite-state automaton.

Theorem: The following are language operations that preserve regularity: prefix closure, Kleene closure, complement, union, concatenation, intersection.

FINITE STATE AUTOMATON

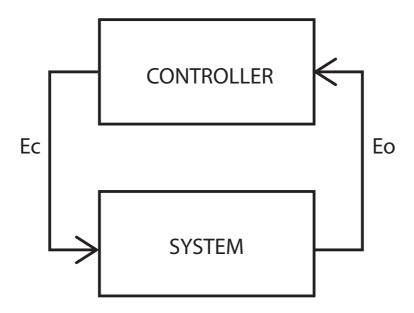
Theorem: (Regular language construction)

For an event set $E = \{e1, e2, ..., en\}$, consider the basic languages: $\{\}, 1, \{ei\}$. Then any regular language can be constructed by repeated application of concatenation, union, and Kleene closure.

REGULAR LANGUAGES

Definition: (Controllable and Observable events) The event set can be generally divided into controllable and observable sets.

$$E = E_c \cup E_{uc}$$
$$E = E_o \cup E_{uo}$$



INPUT/OUTPUT/CONTROL

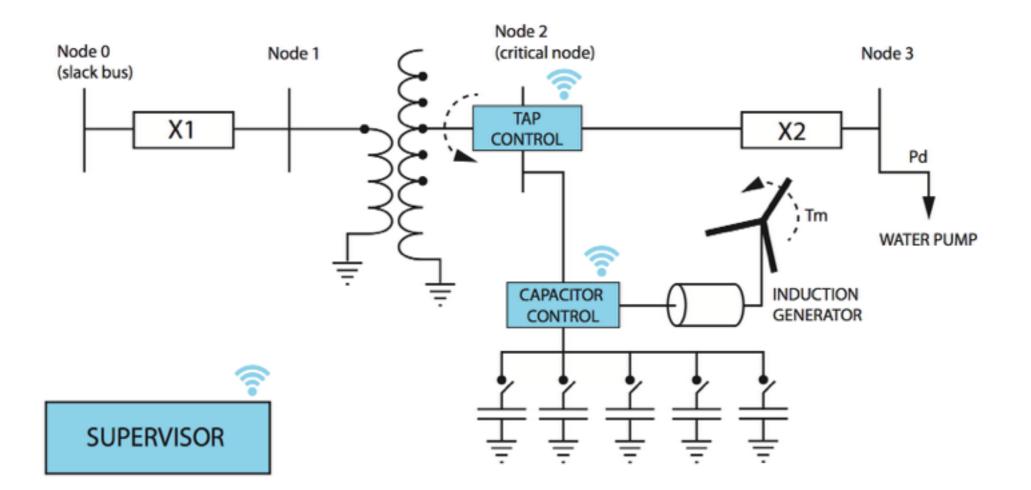
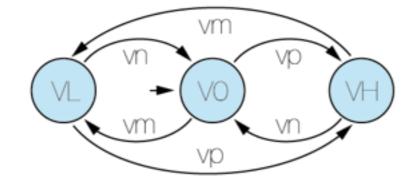


Figure 1: Network system schematic.

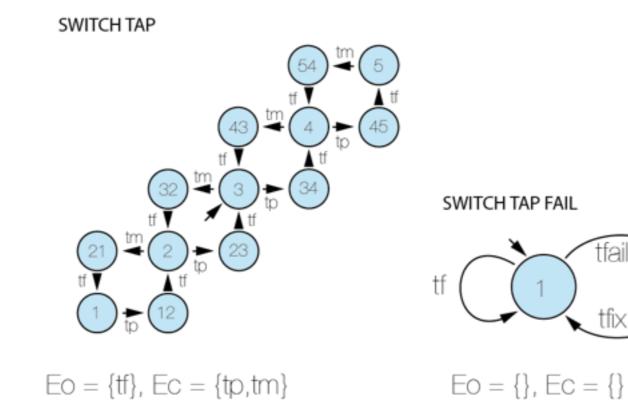
CASE STUDY

VOLTAGE SENSOR (SYSTEM)

 $\mathsf{Eo} = \{\mathsf{vn}, \mathsf{vm}, \mathsf{vp}\}, \ \mathsf{Ec} = \{\}$



SENSOR VOLTAGE



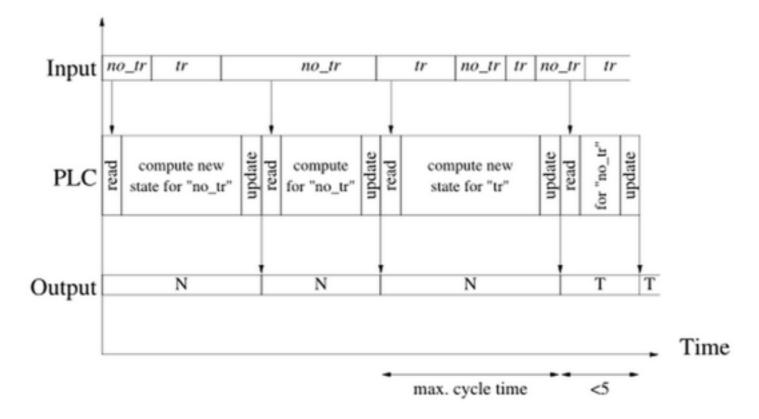
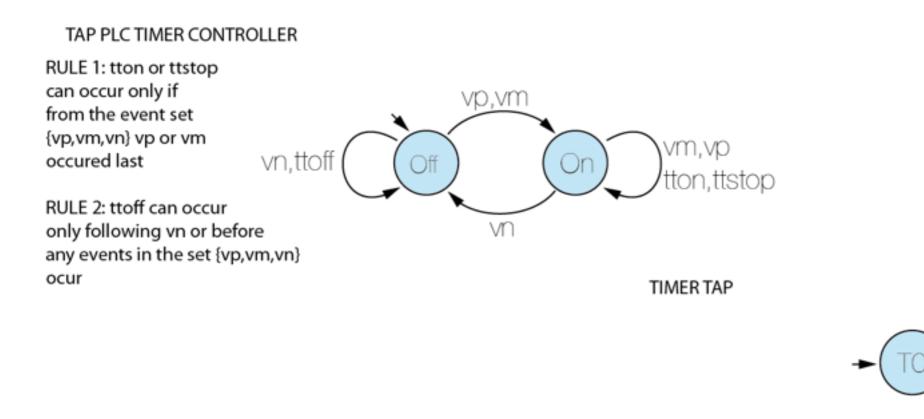


Fig. 2. Cyclic behaviour of a PLC.

GENERAL PLC SCHEMA



TAP PLC OUTPUT CONTROLLER

RULE 1: tp can occur only if vp is the last event in the string from the set {vm,vp}

RULE 2: tm can occur only if vm is the last event in the string from the set {vm,vp}

RULE 3: tp and tm can occur only if ttstop occured

RULE 4: an event from the set {tm,tp} can occur at most once between consecutive ttstop events or following the last ttstop event

PLC AUTOMATA MODEL

10

ttoff, ttstop

 $Eo = \{ttstop\}, Ec = \{tton, ttoff\}$

ΤR