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M A R K O V  C H A I N  M O N T E  
C A R L O  ( M C M C )

The inverse method allows sampling 1d RVs with arbitrary distributions.  
Many real world systems include correlated inputs.  Markov Chain Monte 
Carlo (MCMC) is a method for sampling arbitrary multivariate RVs. 



R E V E R S I B L E  M A R K O V  C H A I N

Kolmogorov’s criterion: A Markov chain with a transition probability P is 
said to be reversible if 

for all finite sequences of states. 

Same holds for continuous time MC, only propensities substituted for 
probabilities.

pj1,j2pj2,j3 · · · pjn�1,jnpjn,j1 = pj1,jnpjn,jn�1 · · · pj3,j2pj2,j1



P E R F E C T  B A L A N C E

Theorem: A reversible Markov Chain satisfies 

Hence, an ergodic Markov Chain with a probability transition matrix 

converges with probability one to the stationary distribution 

⇡ipi,j = ⇡jpj,i

⇡i
⇡j

= pj,i

pi,j

⇡



T R A N S I T I O N  P R O B A B I L I T I E S

Approach: Separate the transition probability into a proposition probability 
and an acceptance probability 

From detailed balanced we obtain 

P (xi|xj) = pr (xi|xj) ac (xi|xj)

ac(xi|xj)
ac(xj |xi)

= P (xi)pr(xj |xi)
P (xj)pr(xi|xj)



T R A N S I T I O N  P R O B A B I L I T I E S

Approach: Separate the transition probability into a proposition probability 
and an acceptance probability 

From detailed balanced we obtain 

One choice for the acceptance function is Metropolis choice

P (xi|xj) = pr (xi|xj) ac (xi|xj)

ac(xi|xj)
ac(xj |xi)

= P (xi)pr(xj |xi)
P (xj)pr(xi|xj)

ac(xi |xj ) = min
!

1, P (x i )pr (x j |x i )
P (x j )pr (x i |x j )

"



P R O P O S A L  F U N C T I O N

The proposal distribution is usually Gaussian, i.e., 

For a uniform target distribution, where the P(xi) = P(xj), MCMC reduces 
to a continuous random walk.   

Q(x|x
i

) = 1
(2⇡)d/2

e

� 1
2 (x�xi)

0(x�xi)



T R A N S I T I O N  P R O B A B I L I T I E S

Gaussian proposition function: for an unbiased random walk the acceptance 
function reduces to 

Hence, if the proposed state has a higher probability, it is always accepted.  
If the proposed state has a lower probability, it is accepted at a rate 
proportional to the two state probability quotient. 

ac (x
i

|x
j

) = min
⇣

1, P (xi)
P (xj)

⌘



A U T O C O R R E L AT I O N

Monte Carlo method requires generation of iid samples, MCMC samples are 
not independent.  To generate approximately iid samples, discard d samples 
for every 1 kept sample.  The number d depends on the sample space, the 
standard deviation the proposal function, and the target distribution.  A test 
whether d is large enough is given by the autocorrelation function. 

Where a sample autocorrelation using circular convolution is 

The practice of discarding samples is called thinning.

autocorr (⌧) = E[(Xt�µ)( Xt+⌧�µ)]
�2

autocorr (i) =
PN ! 1

j=0 xjx
"
j+i



B U R N  I N

A Markov chain takes some time to reach the station distribution.  Although 
convergence to the station distribution is guaranteed from any initial state, 
the amount of time it takes depends on many parameters.  Standard practice 
is to discard enough of the initial samples to ensure samples are only drawn 
from the target distribution. The discard period is called the burn in period 
and can again be computed from the autocorrelation function.  In other 
words, the samples after the burn in period should be independent of the 
initial state.



M A R K O V  C H A I N  M O N T E  
C A R L O  ( M C M C )

MCMC (Metropolis-Hastings Algorithm): Consider a RV 
1. Initialisation (x0) - select an initial value of X and let i = 0. 
2. Proposal (xp) - propose a new sample value of X from the last sampled 

value xi according to the conditional distribution Q(x|xi).  The 
distribution may be the multivariate distribution  
 
that can be sampled by generating d independent normal RVs. 

3. Acceptance (xi+1) - compute the value α(xp,xi) by the Metropolis formula 
 
accept the proposed value with probability α(xp,xi), i.e., if U < α(xp,xi),  
xi+1 = xp, i = i +1, and go to step 2.  Otherwise, reject xp and go to 2. U 
is uniformly distributed on [0,1]. 

Q(x|x
i

) = 1
(2⇡)d/2

e

� 1
2 (x�xi)

0(x�xi)

X : ⌦ ! Rd

↵(x
p

, x

i

) = min
⇣
1, f(xp)Q(xi|xp)

f(xi)Q(xp|xi)

⌘



M A R K O V  C H A I N  M O N T E  
C A R L O  T H E O R E M

Consider the Markov chain {Xi, i = 1,2,3…} generated by the Metropolis-
Hastings Algorithm with the acceptance function 
 
Then the probability density of Xi converges and is equal to f, i.e., for 
sufficiently large i, the generated states are approximately sampled from the 
desired distribution.



M C M C  E X A M P L E

MCMS generates 
autocorrelated 
samples.  Monte Carlo 
requires IID samples.   
Discarding samples  
reduces the autocorrelation.

Acceptance function results  
in higher probability values 
being sampled more often. 
This increases the sampling 
efficiency.  Note, the  
computationally expensive  
part of a simulation is the 
deterministic function  
evaluation, not the RV 
generation.

The Markov process is guaranteed 
to have a stationary distribution 
that is equal to the target  
distribution.  Depending on the 
mixing rate, however, it takes 
some time for the Markov 
process to converge.


