-~ U

—= 8 Validation

Modeling and simulation 2

Daniel Georgiev



QU TLINE

Regression analysis
Hypothesis testing
0-value
{-test
Bootstrapping method
Dootstrapping variance estimator
pootstrapping confidence interval
Distribution metrics
functional norms
\Wasserstein pseudometric



SEGRESSION ANALY SIS

linear model)

ndependent
variable
| dependent . .
STEP 1: MODEL ariable Y =a+ BX + € residual
regressors
STEP 2: RESIDUALS {(X1,¥1),.r, Xy V)Y iz b " D #X
set of measurements model residuals

n
; 2
STEP 30 PARAMETER FIT minSSR, where SSR = e
«, )
1=1

=0 = o, p*

JSSR —0 JSSR
daa 77 0fB

STEP 4. EVALUATE MODEL QUALITY

standard error g% — ,/S8SR increases with noise
n—2

coefficient of

2 SSR
determination R*=1

> (wi—g)? y=n Zz‘:1 Yi




SEGRESSION ANALY SIS

(network example)
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Linear model is clearly not a good fit for the network case study. If it was
we wouldn't have bothered with all that modelling and coding and debugging.

~or DAE systems,
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HYPO ITHESIS TESTING

‘model invalidation)

Hypothesis tests determine whether a hypothesis (or a model) is invalidated
oy the data.

DEFINITION (p-value): Given a null hypothesis Ho, the p-value is the
orobability of obtaining a result equal to or more extreme than what was
actually observed.

P(X >z|Ho)V P (X <z|Ho)V2min{P (X <z|Ho),P(X >x|Ho)}

right tail event left tall event double tail event

EXAMPLE (coin toss):
Ho = the coin is fair, i.e., P(H) = P(T) = 0.5
observation = 16 out of 20 Heads
o-value = P(16 H or more out of 20 | fair coin)

p-value = 7 (1) + (1) + () +(18) +( 5)) ! 0.05¢

Hence, the fair coin model 1s invalidated with confidence 0.9 but
it 1s not Iinvalidated with confidence above 0.95,



- TEST

(normal distribution case)

o-value Is not computable in general because we do not know the
conditional probability P(X=x|Ho).

Assumptions (t-test):

1. the sample mean is normally distributed

2. the sample variance is chi-squared distributed

3. the sample mean and variance are independent random variables

Computation:

1. Compute the t-score:the t-score is a ratio of two random variables.
Under the assumptions, this ratio is described by the t-distribution with
dof degrees of freedom.

LN — 1 the number of degrees of freedom
t-score = on VN equals the number of regressors. |If
we're only approximating the mean, dof = N-1,

2. lable lookup:

t-score for a sample mean, for 10 measurements, the dof = 9
for 5% confidence, the critical value for the t-score = 2.262



- TEST

(applied to regression analysis)

] the null hypothesis is some true value for the linear
HO . 6 = 50 . yp
gressor

STEP 1: consider sample values and the optimal
residuals for these values

(X Y1) oo (XYl = i 1 "1 X

STEP 2 the t-score is the probability that the optimal
regressors for a sample have the given values or
worse. For two regressors, the t-score has two
degrees of freedom and the form

(8" —Bo)vn—2
V(Zm, @)/(Cn (@i-a)?)

Note the similarity to the coefficient of determination.

t-score =




SOO TS ITRAPPING Mz THOD

Consider n iid samples X1, ..., Xp,

DEFINITION: A bootstrapping sample X{, ..., X
's drawn by resampling the original samples n times
with replacement.

Bootstrap Variance Estimator

1. Draw a bootstrap sample X{, ..., X} Compuje!An 1 =g (X7, ..

Y

2. Repeat step 1, B times, yielding estimates 0 1,-...,6nB
3. Compute the std of the estimates.
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Theorem: Under appropriate regularity conditions,
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SO0 T TRAPPING CONFIDENC
INTERVAL

- Draw a bootstrap sample Xl,. ,X COWDUT@' 1 —Q(Xika- 7X’I>I?</)
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2. Repeat step 1, B times, vyielding esmmates Hn 1y -- ,@nB
3. Let

F(t) =457 1 (VA (s — ) <)
4., Let
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where lapha = o)

ITheorem: Under appropriate regularity conditions,
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DISTRIBUTION MzTRHICS

Why not just compare the empirical distribution of the sample with
the simulated distribution of the model”?

Recall the functional norms:

: 71/
FQ=RfAL=" IfPdp ™"

Hence, If we estimate the sample probability distribution P1 and
the model probability distribution P2, we can take the norm of
thelr difference to measure the distance between the model and
the sample data.

P:l 1 [01P2:! ! [01]dy(PL,P2)=||PL" Pyl

ADVANTAGE: no need to match measurements or to know
independent variable values corresponding to measurements

DISADVANTAGE: introduce further error by approximating the
empirical distribution first. The estimation may be especially poor
T not enough measurements are given.



WASSoERS TEIN PozUDO
ME T RIC

Wasserstein pseudo metric resolves the issues with distribution
norms for the 1-dimensional case. It is defined as:

107 = (g /de(w)m(w))l/p

QeJ(Py,Ps)

where J(P1,P2) is the set of joint probability distributions with
marginals equal to P1 and P2,

Intuitively, the Wasserstein pseudo metric can be interpreted as a
solution to the minimum transportation problem.

Minimise the distance traveled in transforming a pile of sand into
another pile of sand with egqual mass.




WASSERS TEIN 1D

Consider two probability distributions
Pl [0l P! 01

and values sampled from these distributions

{(X11, X1} {X21,.» X2.n }

Suppose the individual data sets are in increasing order, then the
Wasserstein pseudo metric satisfies

/n 1/p
. 1 p
Wp (P17P2) :nll_{I;O %E‘Xl’h/[l _X2,i

ADVANTAGES:

NoO need to compute empirical distributions
distance is defined In physical units

NoO need to match data



