LECTURE 5: NETWORK MOTIFS (FFL)

Introduction to cellular system modelling Daniel Georgiev

Summer 2015

OUTLINE

- 3 node networks
- random network subgraphs
- FFL
- C1 FFL
- AND C1 FFL
- arabinose system example
- ORC1 FFL
- Flagella example
- AND 11 FFL
- Galactose example

3 NODE NETWORKS

There are 13 possible network topologies involving 3 nodes (excluding self loops)

SUBGRAPH PROBABILITY

Probability of a specific subgraph that has n nodes and g edges appearing randomly in a network having N nodes and E edges can be approximated as follows.

$$
\left.\begin{array}{rlrl}
p & =\frac{E}{N^{2}} & \begin{array}{l}
\text { prob. of a a given edge } \\
\mathbb{E}\left(N_{G}\right)
\end{array} & =\frac{N^{n} p^{g}}{a} \\
\lambda & =\frac{E}{N} & \begin{array}{l}
\text { prob. of a subgraph } \\
\text { a }=\text { number of isomorrohic permutations }
\end{array} \\
\text { mean network connectivity }
\end{array}\right]
$$

3 NODE MOTIFS

Out of the 13 possibilities, only motifs with two edges and feedforward loops are motifs.

3 NODE MOTIFS

Two edge motifs represent simple activation and repression, which we already discussed. There is only one three edge motif, the Feedforward Loop (FFL).

FFL
42X in E. coli example
$1.7+/$ - in random nets.

FFL

FFL

There are 8 possible feedforward loops that fall into two categories. There are 16 or more possibilities if we consider how the actions of X and Y on Z are aggregated.
Coherent feedforward loops = the delayed and direct paths starting at X both activate or repress the end gene Z.
Incoherent feedforward loops = the delayed and direct paths starting at X act oppositely on the end gene Z.

C1 FFL

37% of FFLs are C1 FFLs

C1 FFL

Implementation of FFLs involves activating signals.

C1 FFL - Arabinose metabolism activation

AND C1 FFL is implemented to activate arabinose metabolism.

AND C1 FFL (ASSUMPTIONS)

Signal activate transcription factors immediately. Production rates are approximated by boolean functions with prescribed activation thresholds, $K_{x y}, K_{x z}$, $K_{y z}$. Production rate of Z is boolean AND.

AND C1 FFL (ON)

AND C1 FFL generates a delay in turning ON the circuit

AND C1 FFL (ON)

AND C1 FFL generates NO delay in turning OFF the circuit

AND C1 FFL (ON and OFF) - arabinose

AND C1 FFL generates a delay in turning ON the circuit

OR C1 FFL

OR C1 FFL generates NO delay in turning ON tand a positive delay in turning OFF the circuit.

OR C1 FFL - Flagella example

OR C1 FFL generates a delay in turning OFF the circuit

11 FFL

30% of FFLs are 11 FFLs

11 FFL - Galactose metabolism activation

AND i1 FFL is implemented to activate galactose metabolism.

AND 11 FFL (ASSUMPTIONS)

Signal activate transcription factors immediately. Production rates are approximated by boolean functions with prescribed activation thresholds, $K_{x y}, K_{x z}$, $K_{y z}$. Production rate of Z is boolean AND.

AND C1 FFL (ON)

AND I1 FFL generates an impulse and also speeds up the response.

AND 11 FFL- galactose

AND I1 FFL speeds up the activation of galactose metabolism to glucose starvation.

AND I1 FFL- galactose

AND 11 FFL speeds up the activation of galactose metabolism to glucose starvation.

