

LECTURE 6 REGULATION MOTIFS

Gene regulation
Time constants of gene regulation
Gene repression
Separation of fast and slow
Dissociation constant
EC50
Hill coefficient
Boolean approximation
Gene activation
Gene regulatory network model
Multidimensional promoters (AND, OR)

E. coli network 5M bp, 4000 genes, 300 TFs (DoFs) 20% network (Shen-Orr 2002) N=420, E=520 Erdos random network, p = E/N^2 Motif Single node motifs

p_self = 1/N, <n_self> = var = E/N
NAR motif
approximate model
steady state normalization
rise time, Tr = K/2/Vmax
comparison with unregulated model
speed up module
robustness module
PAR motif
approximate model
rise time
delay module

EXERCISE

create a random GRN (N=10,E=10)
make direction and sign binomially dist
make Km uniform between 0 and 1
let Vmax = 1
choose input and output at random
generate ensemble of 1e6 step resp

BIONUMBERS

(https://bionumbers.hms.harvard.edu/)
Transcription rate (20-40nt/sec)
mRNA export time (1-10min)
Translation rate (5-10 codons/sec)
Folding time (10-30min/protein)
Diffusion time yeast (0.5sec)
Diffusion rate in cytoplasm (8um^2/sec)
Diffusion rate in water (100um^2/sec)
ER flux yeast (460molecules/sec)
Secretion time (~20min)

TERMINOLOGY AND NOMENCLATURE

transcriptional regulatory network

LECTURE 6 REGULATION MOTIFS

Gene regulation
Time constants of gene regulation
Gene repression
Separation of fast and slow
Dissociation constant
EC50
Hill coefficient
Boolean approximation
Gene activation
Gene regulatory network model
Multidimensional promoters (AND, OR)

E. coli network 5M bp, 4000 genes, 300 TFs (DoFs) 20% network (Shen-Orr 2002) N=420, E=520 Erdos random network, p = E/N^2 Motif Single node motifs

p_self = 1/N, <n_self> = var = E/N
NAR motif
approximate model
steady state normalization
rise time, Tr = K/2/Vmax
comparison with unregulated model
speed up module
robustness module
PAR motif
approximate model
rise time
delay module

EXERCISE

create a random GRN (N=10,E=10)
make direction and sign binomially dist
make Km uniform between 0 and 1
let Vmax = 1
choose input and output at random
generate ensemble of 1e6 step resp

BIONUMBERS

(https://bionumbers.hms.harvard.edu/)
Transcription rate (20-40nt/sec)
mRNA export time (1-10min)
Translation rate (5-10 codons/sec)
Folding time (10-30min/protein)
Diffusion time yeast (0.5sec)
Diffusion rate in cytoplasm (8um^2/sec)
Diffusion rate in water (100um^2/sec)
ER flux yeast (460molecules/sec)
Secretion time (~20min)

ODE model (gene repression)

what is the activation ODE? how would you model the multi-input gene below?

LECTURE 6 REGULATION MOTIFS

Gene regulation
Time constants of gene regulation
Gene repression
Separation of fast and slow
Dissociation constant
EC50
Hill coefficient
Boolean approximation
Gene activation
Gene regulatory network model
Multidimensional promoters (AND, OR)

E. coli network 5M bp, 4000 genes, 300 TFs (DoFs) 20% network (Shen-Orr 2002) N=420, E=520 Erdos random network, p = E/N^2 Motif Single node motifs

p_self = 1/N, <n_self> = var = E/N
NAR motif
approximate model
steady state normalization
rise time, Tr = K/2/Vmax
comparison with unregulated model
speed up module
robustness module
PAR motif
approximate model
rise time
delay module

EXERCISE

create a random GRN (N=10,E=10)
make direction and sign binomially dist
make Km uniform between 0 and 1
let Vmax = 1
choose input and output at random
generate ensemble of 1e6 step resp

BIONUMBERS

(https://bionumbers.hms.harvard.edu/)
Transcription rate (20-40nt/sec)
mRNA export time (1-10min)
Translation rate (5-10 codons/sec)
Folding time (10-30min/protein)
Diffusion time yeast (0.5sec)
Diffusion rate in cytoplasm (8um^2/sec)
Diffusion rate in water (100um^2/sec)
ER flux yeast (460molecules/sec)
Secretion time (~20min)